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Navigation in a small world with local information
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It is commonly known that there exist short paths between vertices in a network showing the small-world
effect. Yet vertices, for example, the individuals living in society, usually are not able to find the shortest paths,
due to the very serious limit of information. To study this issue theoretically, here the navigation process of
launching messages toward designated targets is investigated on a variant of the one-dimensional small-world
network (SWN). In the network structure considered, the probability of a shortcut falling between a pair of
nodes is proportional to™*, wherer is the lattice distance between the nodes. Whet®, it reduces to the
SWN model with random shortcuts. The system shows the dynamic small-world effect, which is different from
the well-studied static SW effect. We study the effective network diameter, the path length as a function of the
lattice distance, and the dynamics. They are controlled by multiple parameters, and we use data collapse to
show that the parameters are correlated. The central finding is that, in the one-dimensional network studied, the
dynamic SW effect exists for€ a=<2. For each given value af in this region, the point where the dynamic
SW effect arises isML’'~1, whereM is the number of useful shortcuts ahd is their average reduced
(effective) length.
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I. INTRODUCTION ena. In the following we briefly describe the basic idea of the
) , ) ) second issue, and its relationship with the first one. A more
Milgram's famous experiment of launching messages 0yetajled review of what is currently known is given in Sec.

ward a target through acquaintangé$ showed that we are ||
living in a small world[2—6]. This experiment is a typical  \jilgram’s experiment probed the structure of the social
example of the various navigation processes taking place oRetyork by studying a typical example of the dynamic navi-
many social and natural network systems, which are knowRyation process. In order to analyze the second issue, we have
as small worlds. About this experiment, as well as its repli-t, put more emphasis on the dynamics. We can clearly see in
cations on a larger scalg], two issues are of special interest e recent experiment by Dodds al. [7] that the navigation

[6,8-1Q: first, the existence of short paths between apparprocess is an interplay between the network structure and the
ently distant individuals in highly regular network systems, nqividual¢ decisions based on their limited information. An

and second, as first noticed and studied by Kleinti@fgthe  ingividual is far from knowing the whole network, and it is
efficiency of network navigators in finding such short paths.iherefore impossible to make an always right decision when
The first issue has been extensively studied, eSpeCia'%rwarding a messagf8,10]. Actually, as the Doddst al.
with the Watts and Strogatz small-world netwo8WN)  eyperiment[7] shows, respondents channel the message
model [2] (see Refs[3-6] and references therein for re- nrough contacts who aonsideredo be the nearest to the

view). If a small portion of long range links are added t0 a4rget. Thus the actual path length is very likely to be larger
regular network, we now know that the network diameter,ihan the shortest one.

defined as the average shortest path length between vertices, |, this article, the navigation process in a small-world
will grow as InN, whereN is the system size. Actually, this petwork is theoretically studied by considering both the
logarithmic scaling can be proved for a variety of networksiatic structure and the dynamic decision-making process.
models(for example, see Ref$11,12), and has also been \ye develop the idea of Kleinberg and provide a systematic
observed in various real-world network3,14. In some  eaiment of the model navigation process. In the one-
networks, the diameter increases even more slowly thah In- gimensional case, the path lengths are obtained. When time
As far as our knowledge goes, most theoretical and experig taken into consideration, the dynamics of the navigation
mental work concerns the first issy8-6]. However, the  ,rqcess can also be obtained. The calculation presented
existence of a short path itself does not guarantee that g, iq pe generalized to systems of higher dimensions.
navigator will be able to easily locate it. With regard to the  Tpis article is organized as follows. The model navigation
second issue, we sitill lack an equally complete understandsocess in a small-world network is described in Sec. II.
ing, although the works of Kleinber@] and de Mour@t al.  Thep the path lengths are calculated in Sec. IlI, and the navi-

[9] and the recent experiment by Dodesal. [7] have al-  gation process is investigated from the dynamic angle in Sec.
ready revealed the interesting and rich underlying phenomp, section V is a summary with some discussion.

Il. THE MODEL OF THE NAVIGATION PROCESS

*Present address: Department of Physics, Princeton University, First we give the definition of the model. The SWN model
Princeton, NJ 08544. Electronic address: hanzhu@princeton.edu presents in a simple way two intrinsic characteristics of vari-
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Sender those vertices that can be reached withirsteps. Wherv
=1, for example, verteA sending a message to vertirst
forwards the message to one of its nearest neighbgrs
which has the least lattice distance fr@nwe suppose that
A has only knowledge of the position @&). ThenA, for-
wards the message #,, ..., until the message reach8s
Obviously, the expected value of the path length depends on
the whole set of parameters: system dizesystem dimen-
sionality D, the fraction of shortcutp, the range of eyeshot
v, the exponenty, and the lattice distanae
Previous theoretical work considers=1, although cur-
rently we still need more information to judge whether this
can correctly represent the realistic situation. In a study on a
FIG. 1. A schematic plot of the navigation process with local Square lattice wittp=1 [8], Kleinberg proves a lower bound
information. The information on a vertex is limited by the finite ON the average actual path lendth) taken by the greedy
range of vieww. If v=c (without any limit, the message will be algorithm to find a randomly chosen target. The bound is
sent through path I. I =1, however, it will be sent through path Il, {I,)=cNf® wherec is a constantN is the total number of

Target

which is longer. vertices, antl
ous natural and social networks in reality, i.e., a high clus- _J@2-a)6, O=<sa<?2,
tering coefficient and a short diameter. An adding-type one- Bla) = (a-22(a-1), a>?2.

dimensional SWN mod€2] can be constructed as follows

(see Fig. 1. We start from a closed ring dfl vertices with  \nhen the shortcuts are added at rand«MBCNm. o
only nearest neighbor connections. The nodes are numbereq, _, ;o 4 special point, at which the lower bound{bf,)

sequentially from O toN-1. (For simplicity we suppose o . ;
thatN is a multiple of 4) Thus, the lattice distance between grows as(in N)%. The mpst _strlklng conclusion of K_Ielnberg .
two nodes numberedandj is mlght be thgt the navigation process has the highest effi-
ciency only in some of the small-world network structures.
rij=N2-li-j[-N/2|. (1)  This result could be generalized toDadimensional lattice
(D=1), with the special value of the expon2at=D. In the
more recent work of de Mourat al. [9], the authors directly
study the average actual path length itself on a Watts-
Strogatz SWN model witle=0 and varyingp, with some

Then, with probabilityp(0<p=<1), each vertex is addition-
ally linked to one of the other nodg€sxcluding its original
nearest neighboyslf this other node is selected at random,

then we shall create a small-world network with randomapproximations. It is found that, when the number of short-

shortcuts. Here, following the idea of Kleinbdigj, we shall . -
also study the case when the shortcuts are added in a bias(élcjjtS 's large, the average actual path length grows with the

; 1/D(D+1) ; 1/2 A ;
manner. With nodé& being one end of the shortcut, the prob- system size asl , 1.e., N for the one-dimensional

ability that nodgj is selected as the other end is a function ofCase and\™® for the two-dimensional case. It also depends
yl 009 , on the value ofp, and (I o)~ (N/p)¥? is obtained by de
the lattice distance between them:

Mouraet al. for the one-dimensional case.

e 1 Usually the concept of the small-worl@&W) effect refers
—'_a = A .J“ to the significant decrease of the shortest path letay#iatic
_ E . Fi,j property in a given network structyrby the introduction of
IS BES

a portion of shortcuts, and in this sense it can be accepted as
wherea is a positive exponent and Afis the normalization the static SW effect. In the following we define the decrease
factor. Obviously, the probability that nodeand nodej are  of the actual path length in the dynamic navigation process
connected is as the dynamic SW effect. Here, in the one-dimensienal
1 2 =1 case, we take into consideration the variation of hoth
1- (1 - ;\r[ﬁ)

and a, and provide a systematic study of the dynamic SW
effect, and especially its threshold. As we shall see below,
Previous studies on this variant of the SWN model covethe dynamic SW effect arises when the total lengtheffec-
topics such as static propertighb,16, random walker$17],
and also the navigation procepd. As is shown in Klein-  itpis apnears different from Kleinberg's original expressigh
berg’s work[8] and below, such a structure has significantpecause we have changed the meaninty éfom the linear length
meaning for the navigation process, and the proper selectiogf the two-dimensinoal system to the total number of vertices.
of « could greatly enhance the efficiency. 2In a later study of a one-dimensional version concerning the
The navigation process can be simulated with the sostatic propertieg16], Senet al. further point out that the system
called greedy algorithniFig. 1). Considering the limitations shows regularity witha>D+1=2, indicating thate=D+1 might
of knowledge, we suppose that each node has a small range a second special point for any dimensionaltyThis issue will
of eyeshotyp, i.e., each vertex has only the information aboutbe addressed in the following discussions.
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tive length of useful shortcuts is comparable to the size of [ i+j-1 K@
N

the network(or the segment under stugdy IT (1- pT
k=i-j+1
i+]
Ill. THE PATH LENGTHS E K-
_ , _ y _ (i-j)“+@i+j™ k=i-j
We begin by deducing a series of quantitid$n)), i.e., X|p A +11 —pT
the expected actual path length between two vertices sepa- S
rated byn regular bonds. In a network consisting Mfver-
tices, forn=1, we simply have L g L
(i-j) (i+))
X|1-11- pT 1- pT (6)
((1))y=1. 2 ’
for 0<j<i-2, and
Forn=2, with probability i-2
Wiig=1-2 W ;. (7)
-a\ 2 i=0
Wa—0= 1_<1_pf) : The exact expression faw;_; will be applied in the next

section where the dynamics of the navigation process is stud-
th iqinal vertex is directl ted 1o the t £ Vi ied. But here it will create technical difficulty for us to obtain
€ original vertex 1S directly connected 10 the larget via &y, path lengths, due to the limit of our computational facili-

shortcut. Obviously, it is with this probability that the mes- .. -
; . ) _ties. Instead, we shall employ some approximations. We con-
sage is transferred directly to the target. Then, with pmbab'léider p/A a relatively small quantity, and if we retain only

ity the first order terms, Eq6) can be simplified to
_ =) (@+))e
W1 =1-Wy wy=gp DT (8)

the message would be forwarded along a regular bond, with
the path length 14(2-1)). Thus, A. The effective diameter

With Egs. (2) and (4) we can obtain the path lengths
(I,(n)) as a function oh, given any values of the parameters
_ N, p, and «. But first we do not differentiate amongand
Now we continue to study the general case. When the messtudy the average actual path length==(,(n)), in com-
sage is held by a node separated from the target by latticgarison with the average shortest path lengtp). As (d,) is
distance (1<i<N/2), W,_; C!enotes the probability that, in commonly known as the system diametd,) can be re-
the next step, the message IS fo_rwardgd .to a node s_eparatﬁec‘ired to as the effective diameter for the navigation process.
frqm the target bY .Igttlce d|stange(0sj =<i-1). Applying In Sec. I, we presented the concepts of the static SW
this set of probabilities, we obtain for2n<N/2 effect and dynamic SW effect, corresponding to the shortest

path length and the actual path length, respectively. The

(1a(2)) =Wo_o + Wo_4[1 +{1,(1))]. ()

n-1 static SW effect is illustrated in Fig. @n N=1000 network
(MY =W o+ 2 W[ +{,030))]. (4)  with random shortcuis the diameter is significantly de-
i=1 creased after a certain threshold region is reached. With re-
spect to the actual path length, here the result of the effective
Now we still have to give the explicit expression faf ;. ~ diameter from Eqs(2) and(4) is compared with direct nu-

We suppose the lattice distance between the current messa@€rical simulations in Fig. 2, and they are in good agree-
holder and the final target is and the next holder is sepa- ment. Similarly, we also observe the decrease of the effective

rated from the target by lattice distangelf j=0, diameter in the dynamic navigation process, namely, the dy-
namic SW effect. The details of this dynamic SW effect, and
o\ 2 especially its threshold, are discussed below.
W =1 _<1 - pl—) _ (5) A very important conclusion has been reached by Klein-
A berg[8] and de Moureet al. [9], in their studies of the vari-

ance of the effective diameter with the system size. As men-
If j >0, the occurrence of this evet,- j, requires two con- tioned above, the static SW effect is commonly represented
ditions for both to be satisfied1) the current holder must be N Mathematics by a logarithmic scaling) ~In N. At the
linked with the next indicated holder, an@) the current Same time, a regularD-dimensional lattice has(d)
holder cannot be linked with other nodes that are closer t&(l;egua? ~N*P. Kleinberg and de Mourat al. have found
the final target than the next holder. Thus, that the dynamic SW effect lies somewhere between the
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B L L we suppose that the structure of the network would be deter-
] mined by two values(l) the number of shortcuts

M =pN, (9)

250 |

200 Effective Diameter i

and(2) the average reduced length of the shortcuts,

150 L’ =L/N=(N/4)/IN=1/4,

whereL is the average length of the shortcuts, and the length
of a shortcut is the lattice distance between its two ends, as
defined in Eq(1). Since the second factor is a constant, we

100
Diameter

50 |- can consideM =pN as the only factor that determines the
| . ] network structure. The reduced effective diamétery)/N
ol ey would be a function opN. We use Eqs(2) and(4) to prove
R T T this hypothesis. As is shown in Fig(a [obtained from Egs.
10 10° 10? 10" 10° (2) and(4)], the data collapse shows
P -
<Il,l:0> = <|a:0>/N = fa:O(pN)l (10)

FIG. 2. In anN=1000 network with random shortcute=0),
the diameter(v==, squarep and the effective diametefp=1, Wheref,-o(x)—1/4 forx<1, and for large values of,
circles(simulation dataand solid curvéanalytical resulf are plot- f_g(X) 1/\;)"(_
ted as a function op. “

This means
well-studied static SW effect and pure regularity, as is re- T \N_/p
viewed in the previous section. a=0 '

As is mentioned above, the effective diameter is con-and agrees with the result of de Mowetal. [9]. Here we can
trolled by multiple factors, and in the following we shall try see thapN~ 1 is approximatelyhe point where the dynamic
to include into our discussion varying, p, anda, and find ~ SW effect arisegin the following we shall see that actually
out how they are correlated. Given a network with an arbi-this point isML'=pN/4~1.)
trary number of vertice®N and an arbitrary value g, we We further generalize this hypothesis to arbitrary values
reduce the network to unit length. Whenis fixed to be 0, of a («>0). In the reduced network of unit length, the struc-

10° e e 10° gy
a=0 1 o=0.5
10" 10
-/\B “Au 2
v 107 v
107k
10 e e e e
10° 10" 10" 10* 10° 10° 10" 10' 10° 10°
(a) ML (b) ML
10°
4l
o al (X,=1.0‘ J 10l
S 4 4
2_ & -]
,ﬁu fy—&"gﬁ '\7 10-2
Y 1 ,
3
0 i 10 3
-5 0 5 10 10® 102 10" 10° 10" 10°
() In ( ML) (d) Mmr

FIG. 3. With different values ofy, (a)(d) show the relationship between the reduced effective dian(jléL;)esEE/N, andML’ [the
expressions for which are taken from E¢®.and(11)]. The effective diameters are obtained from E@$and(4). The data collapse in each
subplot consists of 10 curves with=1000, 2000, 4000,.., 512 000, respectively. On each curve with a specific valud,qgf=1, 1.3,
1.32, ..., 1.35% Thus there are 1862 data points in each subplot. These data collapses strongly suggésREqge., ()=, (ML"). (a)
a=0:(I]_ is plotted as a function dfIL’ =pN/4, and the solid ling/~ \X serves as a guide to the eyb) a=0.5¢1/_, 5 is plotted as a
function of ML’ ~pN/6, and the solid line represenys-x %55 (c) a=1:ML’~pN/InN. In the plot of(l/_;) x ML’ as a function of
In(ML"), the right part of the curve appears as a straight line, and this show§ that-In(ML')/(ML’). (d) a=1.51,; o is plotted as
a function of ML’ = p(YN-+2)/+2. The solid line represenig~ x %982
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ture of the network would be determined by two factqfs, 3000
the number of the shortcutd4=pN, and (2) the average
reduced length of the shortcuts, which can be approximately
written as !é 2000
N/2 ,;;u
f r X< r-edr
bt 1000
N N N/2
f r-edr
1
0
1 a-1 2°N**-4 (@%1)
- o ’
N2(a—2) 2°NI* - 2 @
= . (11) 5 T v 1 v T v 1 v 1 v 1
1 1 1.0x10° - -
(E_N>/In(N/2) (a=1) s |
8.0x10* | i
For large values oN, we havel’—cons{0<a<1), L’ A n
_ A 6.0x10° |- .
~1/InN (a=1), L' ~N (1< a<?), and L’ G [
~N (a>2). Now a question remains to be answered: how 3", g,40' - i
are these two factors related? We further suppose that, with a s
fixed value ofa, the network structure is determined by the 2.0x10° .
direct product ofM andL’. This hypothesis is supported by I
our calculations with Eqs2) and (4), as is shown in Figs. 00 . v .
3(a)-3(d). For each value ofy, the data collapse indicates 00 2.0x10" 4.0x10" 6.0x10" 8.0x10" 1.0x10°
that (b) n
HIN =f, (ML"). (12 FIG. 4. In anN=200 000 network witlp=0.01, the path length

. (I(n)) obtained from Eq(4) is plotted as a function of with
WhenML’ <1, we always havé,—1/4. It means that in different values ofx. In (a), ®=0, 0.5, 1.0, and 1.5. Ifb), the lines

this region the network remains highly regular. _ with @=2.1, 2.4, and 2.7 are of slopes 0.907, 0.958, and 0.972,
What is especially interesting is,-1(x). This is the point respectively.

where the dynamic SW effect coincides with the static SW

effect. In the work{8] on the two-dimensional network with

p=1. Kleinberg obtained recent work on the aging effect of network systeh8§].)

Iy < (In N)Z_ (13 B. Path length as a function of lattice distance
Here, from Eqs(9) and(12) we obtain We could have a better understanding of the navigation
) process by studying the whole function @f,(n)), which
ML"~ pNInN, may help us clarify the relationship between path lengths and
and Fig. c) shows that lattice distances. As is shown in Fig. 4, this relationship is
- sensitive to the value at.
(Ia=p) = IN(ML")/(ML). (1) Whena=0, the shortcuts are added randomly. We can

clearly identify two distinct regions. If the target is not very
far from the source node, the path length tends to increase
linearly with the lattice distance. This is because, with a
small chance of finding a suitable shortcut, the message is
(14) likely to be forwarded solely along regular bonds. However,
the long range shortcuts will dominate the navigation when
which agrees with Eq(13) for p=1. the target is located relatively far from the source node. As a
As is pointed out in the previous section=D+1=2  result, for most of the regior ,-¢(n)) is highly independent
might be the other special point. The above analysis cannaif n. This could be understood with the following qualitative
apply, since there are virtually no long range links. We haveconsiderations. Suppos& (or A,) is separated fronB by
observed that N/2 (or N/2-1) bonds. If no long range bonds exist, the
0 _yoN (15) path length fromA; to B is smaller than that fror to B by
a2 ' one step. However, with long range bonds in the network,
This is exactly the property of a completely regular network,althoughA; is closer toB in lattice distance, the chance of
and agrees with the conclusion of Senal. [16]. This issue  finding a suitable shortcut is also reduced. Our calculation
will be reconsidered in the following subsection, where wefurther shows that these two opposing factors almost coun-
show that witha>2, (I ,~,(n))=n, another sign of regular- teract each other completely, and thu8,-o(N/2))
ity. (Interestingly, a similar transformation can be found in=(l,o(N/2-1))=---. Obviously, (..o approximately

This means

@oc IrlTN[In p+InN=In(InN)] = InTN(In p+InN),
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equals the height of the plateau. In Sec. IV we shall see thatearest neighbor selected based on limited information. In
the height of the plateau is just proportionaI\mTF), and it  this section we shall turn to studying the dynamics of the
directly leads tdl -o) = VN/p. (2) Whena=0.5, the curve of navigation process, by calculating the position of the mes-
(l=04(N)) is similar to that ofa=0. There is still a range in sage as a function of time.

which (I,o4n))=n. But in the plateau that follows,  We suppose node O is sending a message to mode
(l-0<(N)) grows at a very slow, yet detectable pace with (0<N=N/2). We use a series of quantiti€(t) to denote

(3) Whena=1, the message holders are able to find suitabldh® Probability that at timeé (measured in discrete unjtthe
shortcuts even when the target is not far away. At the sam@1€SSage is separated from the target nodexbyegular
time, the shortcuts are not long enough to form a similaonds- With the range of view=1, att=0, the message is
plateau as that observed in the curvexsf0. We can observe N€ld by the source node and we have

the following approximate relation: P,(0)=1, P,_,(0)=0.
(lg=1(N) ~Inn, (16) At t=1, the message is forwarded to one of the nearest
which means neighbors of the source node, and we obtain
dlloes() 1 Po(1)=0.
dn n’ The probability that the message is forwarded to the node

n—-x or n+x (n—-1=x=0) can be written as
Pn-1=x=0(1) = Ph(O)W,,_x,

whereW, _., is the probability of the motion and is defined in
Egs.(6) and (7). Generally, at time (0<t<n),

(4) Whena>1,

(la=1(n) ~ 7,

where the exponeny=0.73 for a=1.5 (giver N=2x 10°
andp=0.01, andy increases to 1 foe>2 (given any val-
ues ofN andp). Since(l,~»(n))~n is a property of regular Poent(t) =0,
networks, this once again proves the nature of regularity in

the networks generated wila>2. The reason may be that n-t+1

the expected length of shortcuts is finie can also ap- Pocyeni) = > Py(t— DW,_y,
proximately predict the value df ,~»(n))/n in the following y=x+1

way. At each time step, with probability the message trav- and

els along a shortcut of length
n—t+1

3 et Po(t) =Po(t =1+ Py(t- 1)+ X Py(t-DW,
r=2 y=2

R="= ' Finally, att=n, the message completely reaches the target,
Sre and
r=2

Py=0(n) =0, Py(n)=1.
and with probability 1-p the message is forwarded through ol o(n)

a regular bond of unity length. Thus, The whole set of probabilitieBy(t), P4(t), ..., P,(t) can be
A o(M) 1 obtained, but in the present study we use them only to cal-
CEASEAA i (17)  culate the expected position of the messag®) as a func-
n (1-p) +pR tion of timet,
This prediction is confirmed by the results of Figbhy n
If we reduce the network to unit length, and plot the re- X)) = D xP,(1). (18)
duced lengtK!1/(n))=<(l,(n))/N againstn’=n/N, we shall =0

be able to observe that data collapse onto a curve, which is
controlled only byML’ for each given value ofx. This
means thatML’ gives not only the effective diameter, bu
also the function ofl ,(n)).

In the following we try to find out how(x(t)) decreases
t with increasingt, and what controls this function. With di-
mensionalityD=1 and the range of view=1, this function
still depends on four parameters: the exponenthe net-
IV. THE DYNAMICS OF THE NAVIGATION PROCESS work sizeN, the fraction of shortcutp, and the lattice dis-
. . tancen. In our study of the path lengths, we cope with this
When a vertex is sending a message o a target located itrio ity by reducing each network of arbitrary size to unit
bonds away, at each time step the message is forwarded tol@ngth, and studying accordingly the reduced path lengths.

Using this method we can clearly identify the factors that
*The value may be different wheM andp change. For example, determine the network diameter, i.e., the exponenand a
with @=1.5 andN=2x 10° fixed, y=~0.73 with p=0.01, y=0.55  direct product of the total number of shortcuts and the aver-
with p=0.1, andy=~0.48 withp=1. Actually, as discussed below, age reduced bond length. A similar analysis can be applied to
the value ofy is given byML’. the investigation of the dynamics.
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First we take the networks with=0 as an example. Simi- 1¢°

larly, we reduce the segment of network to unit length, and 1 1
study the reduced function @k(t))/n. We find that with the 10° !r_ }
value of « fixed, the function ofx(t))/n is determined only E :
by the product of the following two factorgl) The first one & 10°F 1
is the number of useful shortcutd,;. Not all shortcuts con- A E }
nected to the segment are useful. Only those that can lead the g 10° | 3
message to a node closer to the target will be considered. For v : :
example, witha=0, the number of such useful links can be 10*F 3
approximately given by r . 3

10 F 1 L A

PHYSICAL REVIEW E 70, 036117(2004)

M nE
eff ™ P N’

(2) The second factor is the average value of the reduced
effective bond length. =L/ n. The effective length of a
bond equals the distance that it can carry the message closer
to the target. For example, with node 0 as the source node
and noden (0<n<N/2) as the target, the effective length

of the bond connecting node-i (0<<i<n) and noden-j
(0=j<i)isi—j. At the same time, the effective length of the
bond connecting node-i andn+j is alsoi—j. With =0,

we have approximately

Lés= Les/n ~ const.

The calculations using E@18) support the hypothesis that, (b)
with « fixed to be zero, the function gfx(t))/n is solely

determined byM L,
(x(t))

t t
n XCFOM&“"éff(E) B Xa:OYPnZ/N(H> .

FIG. 5. The relationship betweefx(t))/n and timet, as ob-
tained from Eq(18). With =0, Mg~ pr?/N, and two sets of
parameters leading to the same valueMf¢l i are chosenn
=100, N=400, p=0.5 (squares and n=500, N=2000, p=0.1
(circles. With a=1, Mgyl e~ pn/In(N/2), similarly we choosen
=100,N=400, p=0.3835(upward triangles andn=500,N=2000,
p=0.1 (downward triangles

When pr?/N<1, the network is highly regular and obvi-

ously (x(t)) will decrease linearly with increasingg As

pré/N increases beyond 1, the dynamic SW effect arises and

we can observe a faster decay. In Fig. 5, we can see that the n

initial exponential decay ofx(t)) is followed by a Gaussian

cutoff. Mg~
This analysis also helps us to understand better the func-

tion of (I ,-o(n)), which is studied in Sec. Il B. Withe=0,

the curve is divided into a region of linear growth and a

plateau, and we can see that the boundary isgo$tN~ 1. n
With other values of the exponent we can also obtain f

conveniently an approximate expression g andL . In ,

the preceding paragraphs we have discussed the case of

=0. The other limit case i&>2. Obviously, in this case the

expected length of the additional long range bonds is finite,

and the network is virtually a regular one-dimensional ring.gnd

If we plot (x(t))/n as a function oft/n, we shall observe a

linear decay with the slope larger than 1, followed by a pla-

teau whereg(x(t))/n is almost zero. This is not difficult to

understand, since the effective bond length is larger thal

__pn_
In(N/2)°

Hhese expressions are not exact, but they are already able to

Metr X L

unity.

In the region between=0 anda > 2, it seems difficult to
give a simple characterization of the function(gft))/n. In
this region, the case at=1 is of special interest. To obtain

give satisfactory data collapse. When the dynamic SW effect
arises, a typical function is shown in Fig(b.

V. SUMMARY AND DISCUSSION

the exact forms oM and L we will have to calculate a
number of summations, but here we can conveniently use the To summarize, in this article the navigation process is
following approximate expressions instead of the exact onesnvestigated on a variant of the one-dimensional small-world
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network. In the network structure considered, the long rang&alue of « between 0 and 2, the point that the dynamic SW
links are added in a biased way, i.e., the probability of aeffect arises isML’ ~ 1. If the average actual path length in
shortcut falling between a pair of nodes goes&swherer  the whole network is considered, thihis the total number

is the lattice distan_ce between the nodes. This structure ref shortcuts and.’ is their average reduced length. If only a
duces to a SWN with random shortcuts wher0. On this  segment of the network is considered, thdris the number
network, messages are passed to designated target nodgsyseful shortcuts andl’ is the average reduced effective
through acquaintances. Each message holder forwards “I‘@ngth of them(see Sec. IV for definition WhenML’ <1,
message to one of its nearest neighbors selected based onj{g"system is virtually regular and the navigation process
limited information. The system presents the dynamic smallyomains slow. AsML’ exceeds the threshold of 1. the dy-
world effect', which is de'fmed as ;he decrease of the actuglamic S effect arises. The physical meaning of this thresh-
path length In the dyna_lmlc havigation process by a portion o Id is also clear: sinck’ is obtained by dividing the average
shortcuts. This dynamic SW effect is different from the well- length (or effective lengthby the size of the networtor the

studied static SW effect, which refers to the decrease of thg .
' . egment under stuglythe threshold of the dynamic SW ef-
shortest path length. The topics of the present work cover thFecgt is that the totalmiitngttor offective Iengtmyof the useful

effective diameter, the relationship between the path length : :
and the lattice distance, and the dynamics. shortcuts is comparable to the netwgdt segmentsize.

The properties yielded by our calculations are, at first At present, our understanding of the navigation processes

glance, too complex to be described by a single theory duand thg dynamic SW leffect is far from complete. Related
to the r,nultiple parameters, includirg the fraction of short'— ﬁneorgtmal work also includes that on scale-free networks
tsp. the network size\ e'tc We provide a unifying analy- and h|erarch|cgl structure{§.972]].. The task is to §earph for
g:; f:] which we re duce’ the. wholpe network or thg seg%enEetter theoretical characterization of the navigation pro-
L L . ; esses, find out how they are influenced by the static prop-
under investigation to unit length, and then accordingly StUdyerties of the networks, and design network structures that
the reduced diameter, path lengths, and dynamics. In thi '
way, we use data collapse to show that the parameters a
correlated. This provides us with a relatively simple metho
to describe the different aspects of the dynamic SW effect.
The central finding is that, in the one-dimensional network
studied, the dynamic SW effect exists fo@=<2. With ACKNOWLEDGMENT

a>2, the system is dominated by regularity. For each given We thank J.-Y. Zhu for helpful discussions.

Bnable faster navigation. We hope the study of these prob-
&ms will continue to be fruitful.
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