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It is commonly known that there exist short paths between vertices in a network showing the small-world
effect. Yet vertices, for example, the individuals living in society, usually are not able to find the shortest paths,
due to the very serious limit of information. To study this issue theoretically, here the navigation process of
launching messages toward designated targets is investigated on a variant of the one-dimensional small-world
network (SWN). In the network structure considered, the probability of a shortcut falling between a pair of
nodes is proportional tor−a, wherer is the lattice distance between the nodes. Whena=0, it reduces to the
SWN model with random shortcuts. The system shows the dynamic small-world effect, which is different from
the well-studied static SW effect. We study the effective network diameter, the path length as a function of the
lattice distance, and the dynamics. They are controlled by multiple parameters, and we use data collapse to
show that the parameters are correlated. The central finding is that, in the one-dimensional network studied, the
dynamic SW effect exists for 0øaø2. For each given value ofa in this region, the point where the dynamic
SW effect arises isML8,1, whereM is the number of useful shortcuts andL8 is their average reduced
(effective) length.
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I. INTRODUCTION

Milgram’s famous experiment of launching messages to-
ward a target through acquaintances[1] showed that we are
living in a small world [2–6]. This experiment is a typical
example of the various navigation processes taking place on
many social and natural network systems, which are known
as small worlds. About this experiment, as well as its repli-
cations on a larger scale[7], two issues are of special interest
[6,8–10]: first, the existence of short paths between appar-
ently distant individuals in highly regular network systems,
and second, as first noticed and studied by Kleinberg[8], the
efficiency of network navigators in finding such short paths.

The first issue has been extensively studied, especially
with the Watts and Strogatz small-world network(SWN)
model [2] (see Refs.[3–6] and references therein for re-
view). If a small portion of long range links are added to a
regular network, we now know that the network diameter,
defined as the average shortest path length between vertices,
will grow as lnN, whereN is the system size. Actually, this
logarithmic scaling can be proved for a variety of network
models(for example, see Refs.[11,12]), and has also been
observed in various real-world networks[13,14]. In some
networks, the diameter increases even more slowly than lnN.
As far as our knowledge goes, most theoretical and experi-
mental work concerns the first issue[3–6]. However, the
existence of a short path itself does not guarantee that a
navigator will be able to easily locate it. With regard to the
second issue, we still lack an equally complete understand-
ing, although the works of Kleinberg[8] and de Mouraet al.
[9] and the recent experiment by Doddset al. [7] have al-
ready revealed the interesting and rich underlying phenom-

ena. In the following we briefly describe the basic idea of the
second issue, and its relationship with the first one. A more
detailed review of what is currently known is given in Sec.
II.

Milgram’s experiment probed the structure of the social
network by studying a typical example of the dynamic navi-
gation process. In order to analyze the second issue, we have
to put more emphasis on the dynamics. We can clearly see in
the recent experiment by Doddset al. [7] that the navigation
process is an interplay between the network structure and the
individuals9 decisions based on their limited information. An
individual is far from knowing the whole network, and it is
therefore impossible to make an always right decision when
forwarding a message[8,10]. Actually, as the Doddset al.
experiment [7] shows, respondents channel the message
through contacts who areconsideredto be the nearest to the
target. Thus the actual path length is very likely to be larger
than the shortest one.

In this article, the navigation process in a small-world
network is theoretically studied by considering both the
static structure and the dynamic decision-making process.
We develop the idea of Kleinberg and provide a systematic
treatment of the model navigation process. In the one-
dimensional case, the path lengths are obtained. When time
is taken into consideration, the dynamics of the navigation
process can also be obtained. The calculation presented
could be generalized to systems of higher dimensions.

This article is organized as follows. The model navigation
process in a small-world network is described in Sec. II.
Then the path lengths are calculated in Sec. III, and the navi-
gation process is investigated from the dynamic angle in Sec.
IV. Section V is a summary with some discussion.

II. THE MODEL OF THE NAVIGATION PROCESS

First we give the definition of the model. The SWN model
presents in a simple way two intrinsic characteristics of vari-
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ous natural and social networks in reality, i.e., a high clus-
tering coefficient and a short diameter. An adding-type one-
dimensional SWN model[2] can be constructed as follows
(see Fig. 1). We start from a closed ring ofN vertices with
only nearest neighbor connections. The nodes are numbered
sequentially from 0 toN−1. (For simplicity we suppose
that N is a multiple of 4.) Thus, the lattice distance between
two nodes numberedi and j is

r i,j = N/2 − zui − j u − N/2z. s1d

Then, with probabilityps0øpø1d, each vertex is addition-
ally linked to one of the other nodes(excluding its original
nearest neighbors). If this other node is selected at random,
then we shall create a small-world network with random
shortcuts. Here, following the idea of Kleinberg[8], we shall
also study the case when the shortcuts are added in a biased
manner. With nodei being one end of the shortcut, the prob-
ability that nodej is selected as the other end is a function of
the lattice distance between them:

r i,j
−a

o
jÞi,i±1

r i,j
−a

=
1

A
ri,j

−a,

wherea is a positive exponent and 1/A is the normalization
factor. Obviously, the probability that nodei and nodej are
connected is

1 −S1 −
1

A
ri,j

−aD2

.

Previous studies on this variant of the SWN model cover
topics such as static properties[15,16], random walkers[17],
and also the navigation process[8]. As is shown in Klein-
berg’s work [8] and below, such a structure has significant
meaning for the navigation process, and the proper selection
of a could greatly enhance the efficiency.

The navigation process can be simulated with the so-
called greedy algorithm(Fig. 1). Considering the limitations
of knowledge, we suppose that each node has a small range
of eyeshot,v, i.e., each vertex has only the information about

those vertices that can be reached withinv steps. Whenv
=1, for example, vertexA sending a message to vertexB first
forwards the message to one of its nearest neighborsA1
which has the least lattice distance fromB (we suppose that
A has only knowledge of the position ofA1). ThenA1 for-
wards the message toA2, …, until the message reachesB.
Obviously, the expected value of the path length depends on
the whole set of parameters: system sizeN, system dimen-
sionality D, the fraction of shortcutsp, the range of eyeshot
v, the exponenta, and the lattice distancen.

Previous theoretical work considersv=1, although cur-
rently we still need more information to judge whether this
can correctly represent the realistic situation. In a study on a
square lattice withp=1 [8], Kleinberg proves a lower bound
on the average actual path lengthklal taken by the greedy
algorithm to find a randomly chosen target. The bound is
klalùcNbsad, wherec is a constant,N is the total number of
vertices, and1

bsad = Hs2 − ad/6, 0ø a , 2,

sa − 2d/2sa − 1d, a . 2.
J

When the shortcuts are added at random,kla=0lùcN1/3. a
=D=2 is a special point, at which the lower bound ofkla=2l
grows assln Nd2. The most striking conclusion of Kleinberg
might be that the navigation process has the highest effi-
ciency only in some of the small-world network structures.
This result could be generalized to aD-dimensional lattice
sDù1d, with the special value of the exponent2 a=D. In the
more recent work of de Mouraet al. [9], the authors directly
study the average actual path length itself on a Watts-
Strogatz SWN model witha=0 and varyingp, with some
approximations. It is found that, when the number of short-
cuts is large, the average actual path length grows with the
system size asN1/DsD+1d, i.e., N1/2 for the one-dimensional
case andN1/6 for the two-dimensional case. It also depends
on the value ofp, and kla=0l,sN/pd1/2 is obtained by de
Moura et al. for the one-dimensional case.

Usually the concept of the small-world(SW) effect refers
to the significant decrease of the shortest path length(a static
property in a given network structure) by the introduction of
a portion of shortcuts, and in this sense it can be accepted as
the static SW effect. In the following we define the decrease
of the actual path length in the dynamic navigation process
as the dynamic SW effect. Here, in the one-dimensionalv
=1 case, we take into consideration the variation of bothp
and a, and provide a systematic study of the dynamic SW
effect, and especially its threshold. As we shall see below,
the dynamic SW effect arises when the total length(or effec-

1This appears different from Kleinberg’s original expression[8],
because we have changed the meaning ofN from the linear length
of the two-dimensinoal system to the total number of vertices.

2In a later study of a one-dimensional version concerning the
static properties[16], Senet al. further point out that the system
shows regularity witha.D+1=2, indicating thata=D+1 might
be a second special point for any dimensionalityD. This issue will
be addressed in the following discussions.

FIG. 1. A schematic plot of the navigation process with local
information. The information on a vertex is limited by the finite
range of viewv. If v=` (without any limit), the message will be
sent through path I. Ifv=1, however, it will be sent through path II,
which is longer.
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tive length) of useful shortcuts is comparable to the size of
the network(or the segment under study).

III. THE PATH LENGTHS

We begin by deducing a series of quantities,klsndl, i.e.,
the expected actual path length between two vertices sepa-
rated byn regular bonds. In a network consisting ofN ver-
tices, forn=1, we simply have

klas1dl = 1. s2d

For n=2, with probability

W2→0 = 1 −S1 − p
2−a

A
D2

,

the original vertex is directly connected to the target via a
shortcut. Obviously, it is with this probability that the mes-
sage is transferred directly to the target. Then, with probabil-
ity

W2→1 = 1 −W2→0

the message would be forwarded along a regular bond, with
the path length 1+kls2−1dl. Thus,

klas2dl = W2→0 + W2→1f1 + klas1dlg. s3d

Now we continue to study the general case. When the mes-
sage is held by a node separated from the target by lattice
distancei s1ø i øN/2d, Wi→ j denotes the probability that, in
the next step, the message is forwarded to a node separated
from the target by lattice distancej s0ø j ø i −1d. Applying
this set of probabilities, we obtain for 2ønøN/2

klasndl = Wn→0 + o
i=1

n−1

Wn→if1 + klasidlg. s4d

Now we still have to give the explicit expression forWi→ j.
We suppose the lattice distance between the current message
holder and the final target isi, and the next holder is sepa-
rated from the target by lattice distancej . If j =0,

Wi→0 = 1 −S1 − p
i−a

A
D2

. s5d

If j .0, the occurrence of this event,i → j , requires two con-
ditions for both to be satisfied:(1) the current holder must be
linked with the next indicated holder, and(2) the current
holder cannot be linked with other nodes that are closer to
the final target than the next holder. Thus,

Wi→ j = F p
k=i−j+1

i+j−1 S1 − p
k−a

A
DG

35p
si − jd−a + si + jd−a

A
+ 11 − p

o
k=i−j

i+j

k−a

A
2

3 F1 −S1 − p
si − jd−a

A
DS1 − p

si + jd−a

A
DG6 s6d

for 0ø j ø i −2, and

Wi→i−1 = 1 −o
j=0

i−2

Wi→ j . s7d

The exact expression forWi→ j will be applied in the next
section where the dynamics of the navigation process is stud-
ied. But here it will create technical difficulty for us to obtain
the path lengths, due to the limit of our computational facili-
ties. Instead, we shall employ some approximations. We con-
sider p/A a relatively small quantity, and if we retain only
the first order terms, Eq.(6) can be simplified to

Wi→ j = 2p
si − jd−a + si + jd−a

A
. s8d

A. The effective diameter

With Eqs. (2) and (4) we can obtain the path lengths
klasndl as a function ofn, given any values of the parameters
N, p, anda. But first we do not differentiate amongn and
study the average actual path lengthklal=onklasndl, in com-
parison with the average shortest path lengthkdal. As kdal is
commonly known as the system diameter,klal can be re-
ferred to as the effective diameter for the navigation process.

In Sec. II, we presented the concepts of the static SW
effect and dynamic SW effect, corresponding to the shortest
path length and the actual path length, respectively. The
static SW effect is illustrated in Fig. 2(an N=1000 network
with random shortcuts): the diameter is significantly de-
creased after a certain threshold region is reached. With re-
spect to the actual path length, here the result of the effective
diameter from Eqs.(2) and (4) is compared with direct nu-
merical simulations in Fig. 2, and they are in good agree-
ment. Similarly, we also observe the decrease of the effective
diameter in the dynamic navigation process, namely, the dy-
namic SW effect. The details of this dynamic SW effect, and
especially its threshold, are discussed below.

A very important conclusion has been reached by Klein-
berg[8] and de Mouraet al. [9], in their studies of the vari-
ance of the effective diameter with the system size. As men-
tioned above, the static SW effect is commonly represented
in mathematics by a logarithmic scaling,kdl, ln N. At the
same time, a regularD-dimensional lattice haskdl
=kl regularl,N1/D. Kleinberg and de Mouraet al. have found
that the dynamic SW effect lies somewhere between the
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well-studied static SW effect and pure regularity, as is re-
viewed in the previous section.

As is mentioned above, the effective diameter is con-
trolled by multiple factors, and in the following we shall try
to include into our discussion varyingN, p, anda, and find
out how they are correlated. Given a network with an arbi-
trary number of verticesN and an arbitrary value ofp, we
reduce the network to unit length. Whena is fixed to be 0,

we suppose that the structure of the network would be deter-
mined by two values,(1) the number of shortcuts

M = pN, s9d

and (2) the average reduced length of the shortcuts,

L8 ; L/N = sN/4d/N = 1/4,

whereL is the average length of the shortcuts, and the length
of a shortcut is the lattice distance between its two ends, as
defined in Eq.(1). Since the second factor is a constant, we
can considerM =pN as the only factor that determines the
network structure. The reduced effective diameterkla=0l /N
would be a function ofpN. We use Eqs.(2) and(4) to prove
this hypothesis. As is shown in Fig. 3(a) [obtained from Eqs.
(2) and (4)], the data collapse shows

kla=08 l ; kla=0l/N = fa=0spNd, s10d

where fa=0sxd→1/4 for x!1, and for large values ofx,

fa=0sxd ~ 1/Îx.

This means

kla=0l ~ ÎN/p,

and agrees with the result of de Mouraet al. [9]. Here we can
see thatpN,1 is approximatelythe point where the dynamic
SW effect arises. (In the following we shall see that actually
this point isML8=pN/4,1.)

We further generalize this hypothesis to arbitrary values
of a sa.0d. In the reduced network of unit length, the struc-

FIG. 2. In anN=1000 network with random shortcutssa=0d,
the diameter(v=`, squares) and the effective diameter[v=1,
circles(simulation data) and solid curve(analytical result)] are plot-
ted as a function ofp.

FIG. 3. With different values ofa, (a)–(d) show the relationship between the reduced effective diameterkla8l;klal /N, and ML8 [the
expressions for which are taken from Eqs.(9) and(11)]. The effective diameters are obtained from Eqs.(2) and(4). The data collapse in each
subplot consists of 10 curves withN=1000, 2000, 4000,…, 512 000, respectively. On each curve with a specific value ofN, p=1, 1.3−1,
1.3−2, …, 1.3−61. Thus there are 10362 data points in each subplot. These data collapses strongly suggest Eq.(12), i.e., kla8l= fasML8d. (a)
a=0:kla=08 l is plotted as a function ofML8=pN/4, and the solid liney,Îx serves as a guide to the eye.(b) a=0.5:kla=0.58 l is plotted as a
function of ML8<pN/6, and the solid line representsy,x−0.650. (c) a=1:ML8<pN/ ln N. In the plot of kla=18 l3ML8 as a function of
lnsML8d, the right part of the curve appears as a straight line, and this shows thatkla=18 l, lnsML8d / sML8d. (d) a=1.5:kla=1.58 l is plotted as
a function ofML8<psÎN−Î2d /Î2. The solid line representsy,x−0.982.
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ture of the network would be determined by two factors,(1)
the number of the shortcuts,M =pN, and (2) the average
reduced length of the shortcuts, which can be approximately
written as

L8 =
L

N
=

1

N

E
1

N/2

r 3 r−adr

E
1

N/2

r−adr

=5
1

N

a − 1

2sa − 2d
2aN2−a − 4

2aN1−a − 2
sa Þ 1d,

S1

2
−

1

N
D/lnsN/2d sa = 1d 6 . s11d

For large values ofN, we haveL8→consts0,a,1d, L8
,1/ ln N sa=1d, L8,N1−a s1,a,2d, and L8
,N−1 sa.2d. Now a question remains to be answered: how
are these two factors related? We further suppose that, with a
fixed value ofa, the network structure is determined by the
direct product ofM andL8. This hypothesis is supported by
our calculations with Eqs.(2) and (4), as is shown in Figs.
3(a)–3(d). For each value ofa, the data collapse indicates
that

klal/N = fasML8d. s12d

When ML8!1, we always havefa→1/4. It means that in
this region the network remains highly regular.

What is especially interesting isfa=1sxd. This is the point
where the dynamic SW effect coincides with the static SW
effect. In the work[8] on the two-dimensional network with
p=1, Kleinberg obtained

kll ~ sln Nd2. s13d

Here, from Eqs.(9) and (12) we obtain

ML8 < pN/ln N,

and Fig. 3(c) shows that

kla=18 l ~ lnsML8d/sML8d.

This means

kla=1l ~
ln N

p
fln p + ln N − lnsln Ndg <

ln N

p
sln p + ln Nd,

s14d

which agrees with Eq.(13) for p=1.
As is pointed out in the previous section,a=D+1=2

might be the other special point. The above analysis cannot
apply, since there are virtually no long range links. We have
observed that

kla.2l ~ N. s15d

This is exactly the property of a completely regular network,
and agrees with the conclusion of Senet al. [16]. This issue
will be reconsidered in the following subsection, where we
show that witha.2, kla.2sndl~n, another sign of regular-
ity. (Interestingly, a similar transformation can be found in

recent work on the aging effect of network systems[18].)

B. Path length as a function of lattice distance

We could have a better understanding of the navigation
process by studying the whole function ofklasndl, which
may help us clarify the relationship between path lengths and
lattice distances. As is shown in Fig. 4, this relationship is
sensitive to the value ofa.

(1) Whena=0, the shortcuts are added randomly. We can
clearly identify two distinct regions. If the target is not very
far from the source node, the path length tends to increase
linearly with the lattice distance. This is because, with a
small chance of finding a suitable shortcut, the message is
likely to be forwarded solely along regular bonds. However,
the long range shortcuts will dominate the navigation when
the target is located relatively far from the source node. As a
result, for most of the region,kla=0sndl is highly independent
of n. This could be understood with the following qualitative
considerations. SupposeA (or A1) is separated fromB by
N/2 (or N/2−1) bonds. If no long range bonds exist, the
path length fromA1 to B is smaller than that fromA to B by
one step. However, with long range bonds in the network,
althoughA1 is closer toB in lattice distance, the chance of
finding a suitable shortcut is also reduced. Our calculation
further shows that these two opposing factors almost coun-
teract each other completely, and thuskla=0sN/2dl
<kla=0sN/2−1dl<¯. Obviously, kla=0l approximately

FIG. 4. In anN=200 000 network withp=0.01, the path length
klasndl obtained from Eq.(4) is plotted as a function ofn with
different values ofa. In (a), a=0, 0.5, 1.0, and 1.5. In(b), the lines
with a=2.1, 2.4, and 2.7 are of slopes 0.907, 0.958, and 0.972,
respectively.
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equals the height of the plateau. In Sec. IV we shall see that
the height of the plateau is just proportional toÎN/p, and it
directly leads tokla=0l~ÎN/p. (2) Whena=0.5, the curve of
kla=0.5sndl is similar to that ofa=0. There is still a range in
which kla=0.5sndl~n. But in the plateau that follows,
kla=0.5sndl grows at a very slow, yet detectable pace withn.
(3) Whena=1, the message holders are able to find suitable
shortcuts even when the target is not far away. At the same
time, the shortcuts are not long enough to form a similar
plateau as that observed in the curve ofa=0. We can observe
the following approximate relation:

kla=1sndl , ln n, s16d

which means

dkla=1sndl
dn

,
1

n
.

(4) Whena.1,

kla.1sndl , ng,

where the exponentg<0.73 for a=1.5 (given3 N=23105

andp=0.01), andg increases to 1 fora.2 (given any val-
ues ofN andp). Sincekla.2sndl,n is a property of regular
networks, this once again proves the nature of regularity in
the networks generated witha.2. The reason may be that
the expected length of shortcuts is finite. We can also ap-
proximately predict the value ofkla.2sndl /n in the following
way. At each time step, with probabilityp the message trav-
els along a shortcut of length

R=

o
r=2

`

r−a+1

o
r=2

`

r−a

,

and with probability 1−p the message is forwarded through
a regular bond of unity length. Thus,

kla.2sndl
n

=
1

s1 − pd + pR
. s17d

This prediction is confirmed by the results of Fig. 4(b).
If we reduce the network to unit length, and plot the re-

duced lengthkla8sndl;klasndl /N againstn8;n/N, we shall
be able to observe that data collapse onto a curve, which is
controlled only byML8 for each given value ofa. This
means thatML8 gives not only the effective diameter, but
also the function ofklasndl.

IV. THE DYNAMICS OF THE NAVIGATION PROCESS

When a vertex is sending a message to a target locatedn
bonds away, at each time step the message is forwarded to a

nearest neighbor selected based on limited information. In
this section we shall turn to studying the dynamics of the
navigation process, by calculating the position of the mes-
sage as a function of time.

We suppose node 0 is sending a message to noden
s0,nøN/2d. We use a series of quantitiesPxstd to denote
the probability that at timet (measured in discrete units) the
message is separated from the target node byx regular
bonds. With the range of viewv=1, at t=0, the message is
held by the source node and we have

Pns0d = 1, Px,ns0d = 0.

At t=1, the message is forwarded to one of the nearest
neighbors of the source node, and we obtain

Pns1d = 0.

The probability that the message is forwarded to the node
n−x or n+x sn−1ùxù0d can be written as

Pn−1ùxù0s1d = Pns0dWn→x,

whereWn→x is the probability of the motion and is defined in
Eqs.(6) and (7). Generally, at timet s0, t,nd,

Px.n−tstd = 0,

P0,xøn−tstd = o
y=x+1

n−t+1

Pyst − 1dWy→x,

and

P0std = P0st − 1d + P1st − 1d + o
y=2

n−t+1

Pyst − 1dWy→0.

Finally, at t=n, the message completely reaches the target,
and

Px.0snd = 0, P0snd = 1.

The whole set of probabilitiesP0std, P1std, …, Pnstd can be
obtained, but in the present study we use them only to cal-
culate the expected position of the messagekxstdl as a func-
tion of time t,

kxstdl = o
x=0

n

xPxstd. s18d

In the following we try to find out howkxstdl decreases
with increasingt, and what controls this function. With di-
mensionalityD=1 and the range of viewv=1, this function
still depends on four parameters: the exponenta, the net-
work sizeN, the fraction of shortcutsp, and the lattice dis-
tancen. In our study of the path lengths, we cope with this
difficulty by reducing each network of arbitrary size to unit
length, and studying accordingly the reduced path lengths.
Using this method we can clearly identify the factors that
determine the network diameter, i.e., the exponenta, and a
direct product of the total number of shortcuts and the aver-
age reduced bond length. A similar analysis can be applied to
the investigation of the dynamics.

3The value may be different whenN andp change. For example,
with a=1.5 andN=23105 fixed, g<0.73 with p=0.01, g<0.55
with p=0.1, andg<0.48 with p=1. Actually, as discussed below,
the value ofg is given byML8.

H. ZHU AND Z.-X. HUANG PHYSICAL REVIEW E 70, 036117(2004)

036117-6



First we take the networks witha=0 as an example. Simi-
larly, we reduce the segment of network to unit length, and
study the reduced function ofkxstdl /n. We find that with the
value ofa fixed, the function ofkxstdl /n is determined only
by the product of the following two factors.(1) The first one
is the number of useful shortcutsMeff. Not all shortcuts con-
nected to the segment are useful. Only those that can lead the
message to a node closer to the target will be considered. For
example, witha=0, the number of such useful links can be
approximately given by

Meff , pn
n

N
.

(2) The second factor is the average value of the reduced
effective bond lengthLef f8 ;Lef f/n. The effective length of a
bond equals the distance that it can carry the message closer
to the target. For example, with node 0 as the source node
and noden s0,n,N/2d as the target, the effective length
of the bond connecting noden− i s0, i ,nd and noden− j
s0ø j , id is i − j . At the same time, the effective length of the
bond connecting noden− i andn+ j is also i − j . With a=0,
we have approximately

Lef f8 = Lef f/n , const.

The calculations using Eq.(18) support the hypothesis that,
with a fixed to be zero, the function ofkxstdl /n is solely
determined byMeffLef f8 ,

kxstdl
n

= Xa=0,MeffLef f8 S t

n
D = Xa=0,pn2/NS t

n
D .

When pn2/N!1, the network is highly regular and obvi-
ously kxstdl will decrease linearly with increasingt. As
pn2/N increases beyond 1, the dynamic SW effect arises and
we can observe a faster decay. In Fig. 5, we can see that the
initial exponential decay ofkxstdl is followed by a Gaussian
cutoff.

This analysis also helps us to understand better the func-
tion of kla=0sndl, which is studied in Sec. III B. Witha=0,
the curve is divided into a region of linear growth and a
plateau, and we can see that the boundary is justpn2/N,1.

With other values of the exponenta, we can also obtain
conveniently an approximate expression forMeff andLef f8 . In
the preceding paragraphs we have discussed the case ofa
=0. The other limit case isa.2. Obviously, in this case the
expected length of the additional long range bonds is finite,
and the network is virtually a regular one-dimensional ring.
If we plot kxstdl /n as a function oft /n, we shall observe a
linear decay with the slope larger than 1, followed by a pla-
teau wherekxstdl /n is almost zero. This is not difficult to
understand, since the effective bond length is larger than
unity.

In the region betweena=0 anda.2, it seems difficult to
give a simple characterization of the function ofkxstdl /n. In
this region, the case ofa=1 is of special interest. To obtain
the exact forms ofMeff andLef f8 we will have to calculate a
number of summations, but here we can conveniently use the
following approximate expressions instead of the exact ones:

Meff , pn

E
1

n

s1/rddr

E
1

N/2

s1/rddr

= pn
ln n

ln N/2
,

Lef f8 ;
Lef f8

n
,

1

n

E
1

n

rs1/rddr

E
1

n

s1/rddr

<
1

ln n
,

and

Meff 3 Lef f8 ,
pn

lnsN/2d
.

These expressions are not exact, but they are already able to
give satisfactory data collapse. When the dynamic SW effect
arises, a typical function is shown in Fig. 5(b).

V. SUMMARY AND DISCUSSION

To summarize, in this article the navigation process is
investigated on a variant of the one-dimensional small-world

FIG. 5. The relationship betweenkxstdl /n and time t, as ob-
tained from Eq.(18). With a=0, MeffLef f8 ,pn2/N, and two sets of
parameters leading to the same value ofMeffLef f8 are chosen:n
=100, N=400, p=0.5 (squares) and n=500, N=2000, p=0.1
(circles). With a=1, MeffLef f8 ,pn/ lnsN/2d, similarly we choosen
=100,N=400,p=0.3835(upward triangles), andn=500,N=2000,
p=0.1 (downward triangles).
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network. In the network structure considered, the long range
links are added in a biased way, i.e., the probability of a
shortcut falling between a pair of nodes goes asr−a, wherer
is the lattice distance between the nodes. This structure re-
duces to a SWN with random shortcuts whena=0. On this
network, messages are passed to designated target nodes
through acquaintances. Each message holder forwards the
message to one of its nearest neighbors selected based on its
limited information. The system presents the dynamic small-
world effect, which is defined as the decrease of the actual
path length in the dynamic navigation process by a portion of
shortcuts. This dynamic SW effect is different from the well-
studied static SW effect, which refers to the decrease of the
shortest path length. The topics of the present work cover the
effective diameter, the relationship between the path length
and the lattice distance, and the dynamics.

The properties yielded by our calculations are, at first
glance, too complex to be described by a single theory, due
to the multiple parameters, includinga, the fraction of short-
cutsp, the network sizeN, etc. We provide a unifying analy-
sis, in which we reduce the whole network or the segment
under investigation to unit length, and then accordingly study
the reduced diameter, path lengths, and dynamics. In this
way, we use data collapse to show that the parameters are
correlated. This provides us with a relatively simple method
to describe the different aspects of the dynamic SW effect.
The central finding is that, in the one-dimensional network
studied, the dynamic SW effect exists for 0øaø2. With
a.2, the system is dominated by regularity. For each given

value ofa between 0 and 2, the point that the dynamic SW
effect arises isML8,1. If the average actual path length in
the whole network is considered, thenM is the total number
of shortcuts andL8 is their average reduced length. If only a
segment of the network is considered, thenM is the number
of useful shortcuts andL8 is the average reduced effective
length of them(see Sec. IV for definition). WhenML8!1,
the system is virtually regular and the navigation process
remains slow. AsML8 exceeds the threshold of 1, the dy-
namic SW effect arises. The physical meaning of this thresh-
old is also clear: sinceL8 is obtained by dividing the average
length(or effective length) by the size of the network(or the
segment under study), the threshold of the dynamic SW ef-
fect is that the total length(or effective length) of the useful
shortcuts is comparable to the network(or segment) size.

At present, our understanding of the navigation processes
and the dynamic SW effect is far from complete. Related
theoretical work also includes that on scale-free networks
and hierarchical structures[19–21]. The task is to search for
better theoretical characterization of the navigation pro-
cesses, find out how they are influenced by the static prop-
erties of the networks, and design network structures that
enable faster navigation. We hope the study of these prob-
lems will continue to be fruitful.
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